Sains Malaysiana 53(12)(2024): 3219-3227
http://doi.org/10.17576/jsm-2024-5312-07
Nanobunga Hibrid Lektin sebagai Pembawa Novel untuk Pemegunan Glikoenzim
(Lectin Hybrid Nanoflowers as Novel Carrier
for Glycoenzyme Immobilisation)
WAN
NURAZRA MARSYA WAN AHMAD1, NOR NADIA SAAD1, NUR NABILAH
SHAHIDAN2 & MUHAMMAD ASHRAF SHAHIDAN1,*
1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Jabatan Teknologi Tenaga, Mineral dan Bahan Fakulti Biokejuruteraan dan Teknologi, Universiti Malaysia Kelantan, Kampus Jeli,
17600 Jeli, Kelantan, Malaysia
Received: 29
April 2024/Accepted: 19 August 2024
Abstrak
Interaksi khusus antara concanavalin A (Con A), sejenis lektin daripada tumbuhan jackbean, dengan teras manosa pada glikan-N membolehkannya digunakan untuk pemegunan glikoenzim. Dalam kajian ini, nanobunga hibrid Con A-
CuSO4 (CCHN) disediakan sebagai pembawa novel untuk pemegunan peroksidase lobak putih (HRP), glikoenzim yang digunakan secara meluas dalam aplikasi bioanalitikal. Morfologi CCHN yang disediakan dicerap menggunakan mikroskop elektron pengimbasan pancaran medan (FESEM) menunjukkan mikrostruktur persis-bunga dengan saiz purata diameter 51.5 μm serta saiz kelopak bunga yang luas sekitar 2 μm. Seterusnya, pengoptimuman pemegunan HRP
pada CCHN dilakukan menggunakan format tiub Eppendorf dan plat mikro menunjukkan bacaan penyerapan A450 tertinggi pada campuran 100 mg/mL HRP dan 10 mg/mL CCHN untuk kedua-dua format. Aktiviti HRP terpegun pada CCHN
yang diukur menggunakan format tiub Eppendorf (A450 = 1.58) adalah dua kali ganda lebih tinggi berbanding format plat mikro (A450 = 0.76) dan dipilih untuk kajian seterusnya. Bacaan A280 untuk setiap supernatan yang diperolehi selepas pengemparan dalam langkah pembasuhan yang diulang sebanyak empat kali pula didapati amat rendah menunjukkan HRP terpegun dengan kuat pada CCHN dan tiada kebocoran enzim pada larutan. Ujian penjanaan semula menunjukkan HRP terpegun boleh ditanggalkan daripada CCHN dengan sekali pembasuhan menggunakan gula perencat metil a-manosa pada kepekatan 0.1 M. Selain itu, ujian kebolehulangan turut dilakukan menggunakan tiga kelompok CCHN yang berbeza kerana tiada perbezaan signifikan pada bacaan A450 menunjukkan kebolehulangan yang baik untuk pemegunan HRP. Keputusan kajian ini menunjukkan CCHN yang dihasilkan mempunyai potensi yang tinggi untuk digunakan sebagai pembawa untuk pemegunan glikoenzim secara mudah, tekal serta boleh diguna-semula.
Kata kunci: Con A; glikoenzim; lektin; nanobunga
Abstract
Specific
interaction between concanavalin A (Con A), a plant lectin from jackbean, with mannose core in N-glycans can be exploited
to immobilise glycoenzymes. In this study, we
prepared Con A-copper sulphate hybrid nanoflower (CCHN) as a novel carrier to
immobilise horseradish peroxidase (HRP), a widely used glycoenzyme in bioanalytical application. The morphology of the prepared CCHN was
determined using field emission scanning electron microscopy (FESEM), which
showed flower-like microstructures with an average diameter size of 51.5 μm with and wide petal size of an approximately 2 μm. Then, HRP immobilisation optimisation experiments
were carried out in Eppendorf tubes and microplates, which both formats showed
the highest A450 measurements at 100 mg/mL HRP and 10 mg/mL CCHN
mixture. However, twice HRP activities (A450 =1.58) were recorded
when using Eppendorf tubes format as compared to microplate format (A450 = 0.76) and thus was used for further experiments. Furthermore, supernatant
obtained after each washing step showed very low A280 values up to
four washing cycles, indicating HRP was strongly immobilised to the CCHN and no
enzyme leakage into solution. Meanwhile, regeneration study showed that single
washing step using inhibitory sugar, methyl a-mannose, at 0.1 M can effectively
detach HRP from CCHN. Moreover, reproducibility test using CCHN prepared in
three different batches showed consistent HRP activity readings indicating good
reproducibility. This study highlighted the potential application of lectin
hybrid nanoflower as a simple, reproducible and reusable carrier for glycoenzyme immobilisation.
Keywords: Con A; glycoenzyme; lectin; nanoflowers
REferences
Ali, M., Ramirez, P., Tahir, M.N., Mafe, S., Siwy, Z., Neumann, R., Tremel, W. & Ensinger, W.
2011. Biomolecular conjugation inside synthetic polymer nanopores via
glycoprotein–lectin interactions. Nanoscale 3(4): 1894-1903.
Auld, D.S., Coassin,
P.A., Coussens, N.P., Hensley, P., Klumpp-Thomas, C., Michael, S., Sittampalam,
G.S., Trask, O.J., Wagner, B.K., Weidner, J.R., Wildey,
M.J. & Dahlin, J.L. 2004. Microplate selection and recommended practices in
high-throughput screening and quantitative biology. Dlm. The Assay Guidance, disunting oleh Markossian, S., Grossman, A., Arkin,
M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens,
N.P., Dahlin, J.L., Devanarayan, V., Foley, T.L., Glicksman, M., Gorshkov, K.,
Haas, J.V., Hall, M.D., Hoare, S., Inglese, J., Iversen, P.W., Lal-Nag, M., Li,
Z., Manro, J.R., McGee, J., McManus, O., Pearson, M., Riss, T., Saradjian, P., Sittampalam, G.S., Tarselli, M.,
Trask Jr., O.J., Weidner, J.R., Wildey, M.J., Wilson,
K., Xia, M. & Xu, X. Bethesda (MD): Eli Lilly & Company and the
National Center for Advancing Translational Sciences. hlm. 1381-1429.
Bu, S., Wang, K., Ju, C., Han, Y., Li, Z.,
Du, P., Hao, Z., Li, C., Liu, W. & Wan, J. 2018. A pregnancy test strip for
detection of pathogenic bacteria by using concanavalin A-human chorionic
gonadotropin-Cu3(PO4)2 hybrid nanoflowers,
magnetic separation, and smartphone readout. Microchimica Acta 185: 464.
dos Santos Silva, P.M., de Oliveira, W.F.,
Albuquerque, P.B.S., dos Santos Correia, M.T. & Coelho, L.C.B.B. 2019.
Insights into anti-pathogenic activities of mannose lectins. International
Journal of Biological Macromolecules 140: 234–244.
Ge, J., Lei, J. & Zare,
R.N. 2012. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology 7(7): 428-432.
Han, J., Luo, P., Wang, L., Li, C., Mao, Y.
& Wang, Y. 2019. Construction of magnetic nanoflower biocatalytic system
with enhanced enzymatic performance by biomineralization and its application
for bisphenol A removal. Journal of Hazardous Materials 380: 120901.
Huang, J., Zhuang, W., Wei, C., Mu, L.,
Zhu, J., Zhu, Y., Wu, J., Chen, Y. & Ying, H. 2018. Concanavalin A induced
orientation immobilization of Nuclease P1: The effect of lectin agglutination. Process
Biochemistry 64: 160-169.
Khairol Mokhtar, N.H.I., Hussin,
A., Hamid, A.A., Zainal Ariffin, S.H. & Shahidan, M.A. 2022. Systematic optimisation of microtiter
plate lectin assay to improve sialic acid linkage detection. Combinatorial
Chemistry & High Throughput Screening 25(9): 1507-1517.
Kilimci, U., Evli, S., Öndeş, B., Uygun, M. & Uygun, D.A. 2021. Inulinase immobilized lectin affinity magnetic nanoparticles for inulin hydrolysis. Applied
Biochemistry and Biotechnology 193(5): 1415-1426.
Lee, S.J., Jang, H. & Lee, D.N. 2022.
Inorganic nanoflowers - synthetic strategies and physicochemical properties for
biomedical applications: A review. Pharmaceutics 14(9): 1887.
Lewis, A.G. & Gibney, P.A. 2023. A
rapid method to determine growth‐limiting nutrient concentrations for
yeast in a microplate spectrophotometer. Current Protocols 3(5): e376.
Li, M., Su, H.,
Tu, Y., Shang, Y., Liu, Y., Peng, C. & Liu, H. 2019. Development and
application of an efficient medium for chromogenic catalysis of
tetramethylbenzidine with horseradish peroxidase. ACS Omega 4(3):
5459-5470.
Lin, M. & Chen, Z. 2020. A facile
one-step synthesized epsilon-MnO2 nanoflowers for effective removal
of lead ions from wastewater. Chemosphere 250: 126329.
Liu, Y., Chen, J., Du, M., Wang, X., Ji, X.
& He, Z. 2017. The preparation of dual-functional hybrid nanoflower and its
application in the ultrasensitive detection of disease-related biomarker. Biosensors
and Bioelectronics 92: 68-73.
Qi, L., Yang, M., Chang, D., Zhao, W.,
Zhang, S., Du, Y. & Li, Y. 2021. A DNA nanoflower‐assisted
separation‐free nucleic acid detection platform with a commercial
pregnancy test strip. Angewandte Chemie International Edition 60(47): 24823-24827.
Sankarraj, N. & Nallathambi,
G. 2015. Immobilization and characterization of cellulase on concanavalin A
(Con A)-layered calcium alginate beads. Biocatalysis and Biotransformation 33(2): 81-88.
Sha, Q., Guan, R., Su,
H., Zhang, L., Liu, B-F., Hu, Z. & Liu, X. 2020. Carbohydrate-protein
template synthesized high mannose loading gold nanoclusters: A powerful
fluorescence probe for sensitive Concanavalin A detection and specific breast
cancer cell imaging. Talanta 218: 121130.
Shende, P., Kasture,
P. & Gaud, R.S. 2018. Nanoflowers: The future trend of nanotechnology for
multi-applications. Artificial Cells, Nanomedicine, and Biotechnology 46(sup1): 413-422.
Silva, M.L.S. 2019. Lectin biosensors in
cancer glycan biomarker detection. Dlm. Advances
in Clinical Chemistry, disunting oleh Makowski,
G.S. Elsevier. hlm. 1-61.
Sugiyama, K., Sato, F., Komatsu, S., Kamijo, T., Yoshida, K., Kawabe,
Y., Nishikawa, H., Fujimura, T., Takahashi, Y. & Sato, K. 2023. Highly
sensitive glucose electrochemical sensor using sugar-lectin interactions. Electrochemical
Science Advances 4(5): e2300015.
Takahashi, Y. & Fukusato,
T. 2017. Animal models of liver diseases. Dlm. Animal
Models for the Study of Human Disease. 2nd ed. Massachusetts: Academic
Press. hlm. 313-339.
Tarhan, T., Ulu, A., Sariçam,
M., Çulha, M. & Ates,
B. 2020. Maltose functionalized magnetic core/shell Fe3O4@Au
nanoparticles for an efficient l-asparaginase immobilization. International
Journal of Biological Macromolecules 142: 443-451.
Tran, T.D. & Kim, M.I. 2018.
Organic-inorganic hybrid nanoflowers as potent materials for biosensing and
biocatalytic applications. BioChip Journal 12(4): 268-279.
Wang, K.Y., Bu, S.J., Ju, C.J., Han, Y.,
Ma, C.Y., Liu, W.S., Li, Z.Y., Li, C.T. & Wan, J.Y. 2019. Disposable
syringe-based visual immunotest for pathogenic
bacteria based on the catalase mimicking activity of platinum
nanoparticle-concanavalin A hybrid nanoflowers. Microchimica Acta 186: 57.
Wang, K.Y., Bu, S.J., Ju, C.J., Li, C.T.,
Li, Z.Y., Han, Y., Ma, C.Y., Wang, C.Y., Hao, Z., Liu, W.S. & Wan, J.Y.
2018. Hemin-incorporated nanoflowers as enzyme mimics for colorimetric
detection of foodborne pathogenic bacteria. Bioorganic and Medicinal
Chemistry Letters 28(23-24): 3802-3807.
Welch, K.T., Turner, T.A. & Preast, C.E. 2008. Rational design of novel glycomimetics: Inhibitors of concanavalin A. Bioorganic
and Medicinal Chemistry Letters 18(24): 6573-6575.
Yang, F., Xiang, C., Fang, S., Xu, F., Sun,
L., Shen, C.Y. & Zou, Y. 2023. Synthesis and catalytic performance of
nanoflower-like Ru@CoAl-LDH composite catalyst for
NaBH4 hydrolysis. Journal of Alloys and Compounds 945:
169280.
Yang, N. & Yang, S. 2022. Synthesis of
hydrolyzate-Cu3(PO4)2 hybrid nanoflowers from
the alkaline thermal hydrolysate of sludge. Materials Today Communications 31: 103824.
Ye, R., Zhu, C., Song, Y., Lu, Q., Ge, X.,
Yang, X., Zhu, M.-J., Du, D., Li, H. & Lin, Y. 2016. Bioinspired synthesis
of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH
meter for on-site detection of food pathogen. Small 12(23): 3094-3100.
Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin,
Z. & Cai, Z. 2015. An enzyme–inorganic hybrid nanoflower based immobilized
enzyme reactor with enhanced enzymatic activity. Journal of Materials
Chemistry B 3(11): 2295-2300.
Zeinhom, M.M.A., Wang, Y., Sheng, L., Du, D., Li,
L., Zhu, M-J. & Lin, Y. 2018. Smart phone based immunosensor coupled with
nanoflower signal amplification for rapid detection of Salmonella Enteritidis
in milk, cheese and water. Sensors and Actuators B: Chemical 261: 75-82.
*Corresponding author; email:
mashraf@ukm.edu.my